Hello and welcome to another self-driving cars tutorial, in this tutorial we're going to use the TensorFlow Object Detection API to see about commandeering a vehicle.
Up to this point, our code is:
# coding: utf-8 # # Object Detection Demo # License: Apache License 2.0 (https://github.com/tensorflow/models/blob/master/LICENSE) # source: https://github.com/tensorflow/models import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image from grabscreen import grab_screen import cv2 # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") # ## Object detection imports # Here are the imports from the object detection module. from utils import label_map_util from utils import visualization_utils as vis_util # # Model preparation # What model to download. MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017' MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 # ## Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # ## Loading label map # Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # ## Helper code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # Size, in inches, of the output images. IMAGE_SIZE = (12, 8) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: while True: #screen = cv2.resize(grab_screen(region=(0,40,1280,745)), (WIDTH,HEIGHT)) screen = cv2.resize(grab_screen(region=(0,40,1280,745)), (800,450)) image_np = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) for i,b in enumerate(boxes[0]): # car bus truck if classes[0][i] == 3 or classes[0][i] == 6 or classes[0][i] == 8: if scores[0][i] >= 0.5: mid_x = (boxes[0][i][1]+boxes[0][i][3])/2 mid_y = (boxes[0][i][0]+boxes[0][i][2])/2 apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),1) cv2.putText(image_np, '{}'.format(apx_distance), (int(mid_x*800),int(mid_y*450)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2) if apx_distance <=0.5: if mid_x > 0.3 and mid_x < 0.7: cv2.putText(image_np, 'WARNING!!!', (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3) cv2.imshow('window',image_np) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break
So the above code is used to determine if a vehicle is too close, we can still use part of this code, but our new objective is instead to find cars and...procure them.
There are a bunch of ways to do this, but the first that came to my mind was to take account of all of the vehicles in sight, and then head towards the closest car. If we're close enough to get in, we'll attempt to get in. Once we get in, we'll stop heading for cars.
To begin, from the above code, we're going to be working specifically in this chunk of code:
for i,b in enumerate(boxes[0]): # car bus truck if classes[0][i] == 3 or classes[0][i] == 6 or classes[0][i] == 8: if scores[0][i] >= 0.5: mid_x = (boxes[0][i][1]+boxes[0][i][3])/2 mid_y = (boxes[0][i][0]+boxes[0][i][2])/2 apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),1) cv2.putText(image_np, '{}'.format(apx_distance), (int(mid_x*800),int(mid_y*450)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2) if apx_distance <=0.5: if mid_x > 0.3 and mid_x < 0.7: cv2.putText(image_np, 'WARNING!!!', (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
Our first order of business is to log all of the cars in the area. I am sure there's a better way, but I am just going to create a dictionary, storing vehicle locations and score by distance as the key. Then, we'll just sort the keys, and find the closest vehicle to approach. So, before the for i,b ...
loop, we'll add:
vehicle_dict = {} for i,b in enumerate(boxes[0]):
Next, I am going to change the rounding in our apx_distance
to go to 3 places:
apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),3)
I am doing that so we are less likely to get duplicate distances. We still might, but it shouldn't be too problematic.
Now let's store vehicles to our dictionary:
vehicle_dict[apx_distance] = [mid_x, mid_y, scores[0][i]]
Outside of the for loop, let's check our dictionary for vehicles, and head towards the closest:
if len(vehicle_dict) > 0: closest = sorted(vehicle_dict.keys())[0] vehicle_choice = vehicle_dict[closest] print('CHOICE:',vehicle_choice) determine_movement(mid_x = vehicle_choice[0], mid_y = vehicle_choice[1], width=1280, height=705)
Our new block of code is:
vehicle_dict = {} for i,b in enumerate(boxes[0]): # car bus truck if classes[0][i] == 3 or classes[0][i] == 6 or classes[0][i] == 8: if scores[0][i] >= 0.5: mid_x = (boxes[0][i][1]+boxes[0][i][3])/2 mid_y = (boxes[0][i][0]+boxes[0][i][2])/2 apx_distance = round(((1 - (boxes[0][i][3] - boxes[0][i][1]))**4),3) cv2.putText(image_np, '{}'.format(apx_distance), (int(mid_x*800),int(mid_y*450)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2) if apx_distance <=0.5: if mid_x > 0.3 and mid_x < 0.7: cv2.putText(image_np, 'WARNING!!!', (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3) vehicle_dict[apx_distance] = [mid_x, mid_y, scores[0][i]] if len(vehicle_dict) > 0: closest = sorted(vehicle_dict.keys())[0] vehicle_choice = vehicle_dict[closest] print('CHOICE:',vehicle_choice) determine_movement(mid_x = vehicle_choice[0], mid_y = vehicle_choice[1], width=1280, height=705)
Now we just have one minor problem... determine_movement
doesn't exist! We want this function to determine which way our agent should look and go towards. That's what we're going to cover in the next tutorial!